
AD-A269 102IiIIIIIIIIffIIll | II

Family Values: A Behavioral Notion of Subtyping

Barbara Liskov* Jeannette M. Wing

July 16, 1993

D TIC CMU-CS-93-187
ELECTSEP021993

A ]School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213

*Laboratory for Computer Science

Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139

This report supersedes a majority of the contents in CMU-CS-92-220 and all of
CMU-CS-93-149. The document is a union of papers, prepared by the authors,

that appeared in ECOOP '93 and OOPSLA '93.
93-20530

Th~i-s documeat hcs been approved IjIIIj~II fh~iII
for public r~Iea~e and sale- ib ~ 11 Iliili W'1, Idistributio, ,is_ uni,-ited. i Abstract

The use of hierarchy is an important component of object-oriented design. Hierarchy allows the use of
type families, in which higher level supertypes capture the behavior that all of their subtypes have in
common. For this methodology to be effective, it is necessary to have a clear understanding of howsubtypes and supertypes are related. This paper takes the position that the relationship should ensure
that any property proved about supertype objects also holds for its subtype objects. It presents two ways
"of defining the subtype relation, eac of which meets this criterion, and each of which is easy for

* programmers to use. The paper also discusses the ramifications of this notion of subtyping on the design
of type families.

B. Liskov was supported in part by the Advanced Research Projects Agen of the Department of
Defense, monitored by the Office of Naval Research under Contract N00014-91-J -4136 and in part by the
National Science Foundation under Grant CCR-8822158; J. Wing was supported in part by the Avionics
Laboratory, Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air
Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of DARPA, ONR, NSF or the
U.S. Government.

Ut



Keywords: Subtype, object-oriented design, abstraction function, extensible types, mutable typcs.
specifications, semantics



Accesion Foe
NTIS 4R.`Family Values: A Behavioral Notion of Subtyping J IC TAE

J t"•t, ;Z-fion

DflC QUPILLCY -5.L

Abstract

The use of hierarchy is an important component of object-oriented design. Hierarchy
allows the use of type families, in which higher level supertypes capture the behavior that
all of their subtypes have in common. For this methodology to be effective, it is necessary
to have a clear understanding of how subtypes and supertypes are related. This paper takes
the position that the relationship should ensure that any property proved about supertype
objects also holds for its subtype objects. It presents two ways of defining the subtype
relation, each of which meets this criterion, and each of which is easy for programmers
to use. The subtype relation is based on the specifications of the sub- and supertypes;
the paper presents a way of specifying types that makes it convenient to define the subtype
relation. The paper also discusses the ramifications of this notion of subtyping on the design
of type families.

1 Introduction

What does it mean for one type to be a subtype of another? We argue that this is a semantic

question having to do with the behavior of the objects of the two types: the objects of the

subtype ought to behave the same as those of the supertype as far as anyone or any program

using supertype objects can tell.

For example, in strongly typed object-oriented languages such as Simula 67[9], C++[35],

Modula-3[32], and Trelis/Owl[331, subtypes are used to broaden the assignment statement. An

assignment

x: T := E

"*Supported in part by the Advanced Research Projects Agency of the Department of Defense, monitored by
the Office of Naval Research under contract N00014-91-J-4136 and in part by the National Science Foundation
under Grant CCR-8822158

tSupported in part by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems
Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465,
ARPA Order No. 7597.



is legal provided the type of expression E is a subtype of the declared type T of variable x.

Once the assignment has occurred, x will be used according to its "apparent" type T, with the

expectation that if the program performs correctly when the actual type of x's object is T, it

will also work correctly if the actual type of the object denoted by x is a subtype of T.

Clearly subtypes must provide the expected methods with compatible signatures. This

consideration has led to the formulation of the contra/covariance rules[3, 33, 5]. However, these

rules are not strong enough to ensure that the program containing the above assignment will

work correctly for any subtype of T, since all they do is ensure that no type errors will occur. It

is well known that type checking, while very useful, captures only a small part of what it means

for a program to be correct; the same is true for the contra/covariance rules. For example,

stacks and queues might both have a put method to add an eletrent and a get method to

remove one. According to the contravariance rule, either could be a legal subtype of the other.

However, a program written in the expectation that x is a stack is unlikely to work correctly if

x actually denotes a queue, and vice versa.

What is needed is a stronger requirement that constrains the behavior of subtypes: prop-

erties that can be proved using the specification of an object's presumed type should hold

even though the object is actually a member of a subtype of that type. This paper's main

contribution is to provide two general, yet easy to use, definitions of the subtype relation that

precisely capture this subtype requirement. Our definitions extend earlier work, including the

most closely related work done by America[2], by allowing subtypes to have more methods than

their supertypes. They apply even in a very general environment in which possibly concurrent

users share mutable objects. Our approach is also constructive: One can prove whether a sub-

type relation holds by proving a small number of simple lemmas based on the specifications of

the two types.

Our paper makes two other contributions. First, it provides a way of specifying object

types that allows a type to have multiple implementations and makes it convenient to define

the subtyping relation. Our specifications are formal, which means that they have a precise

mathematical meaning that serves as a firm foundation for reasoning. Our specifications can

also be used informally as described in [27].

Second, it explores the ramifications of the subtype relation and shows how interesting type

families can be defined. For example, arrays are not a subtype of sequences (because the user

of a sequence expects it not to change over time) and 32-bit integers are not a subtype of 64-bit

2



integers (because a user of 64-bit integers would expect certain method calls to succeed that

will fail when applied to 32-bit integers). However, type families can be defined that group such

related types together.

The paper is organized as follows. Section 2 discusses in more detail what we require of

our subtype relation and provides the motivation for our approach. Next we describe our

model of computation and then present our specification method. Section 5 presents our two

definitions of subtyping and Section 6 discusses the ramifications of our approach on designing

type hierarchies. We describe related work in Section 7 and then close with a summary of

contributions.

2 Motivation

To motivate the basic idea behind our notion of subtyping, let's look at an example. Consider

a bounded bag type that provides a put method that inserts elements into a bag and a get

method that removes an arbitrary element from a bag. Put has a pre-condition that checks to

see that adding an element will not grow the bag beyond its bound; get has a pre-condition

that checks to see that the bag is non-empty.

Consider also a bounded stack type that has, in addition to push and pop methods, a

swap-top method that takes an integer, i, and modifies the stack by replacing its top with i.

Stack's push and pop methods have pre-conditions similar to bag's put and get, and swap-top

has a pre-condition requiring that the stack is non-empty.

Intuitively, stack is a subtype of bag because both are collections that retain an element

added by put/push until it is removed by get/pop. The get method for bags does not specify

precisely what element is removed; the pop method for stack is more constrained, but what

it does is one of the permitted behaviors for bag's get method. Let's ignore swap-top for the

moment.

Suppose we want to show stack is a subtype of bag. We need to relate the values of stacks to

those of bags. This can be done by means of an abstraction function, like that used for proving

the correctness of implementations [19]. A given stack value maps to a bag value where we

abstract from the insertion order on the elements.

We also need to relate stack's methods to bag's. Clearly there is a correspondence between

stack's put method and bag's push and similarly for the get and pop methods (even though

the names of the corresponding methods do not match). The pre- and post-conditions of

3



corresponding methods will need to relate in some precise (to be defined) way. In showing this

relationship we need to appeal to the abstraction function so that we can reason about stack

values in terms of their corresponding bag values.

Finally, what about swap-top? Most other definitions of the subtype relation have ignored

such "extra" methods, and it is perfectly adequate do so when procedures are considered in

isolation and there is no aliasing. In such a constrained situation, a program that uses an

object that is apparently a bag but is actually a stack will never call the extra methods, and

therefore their behavior is irrelevant. However, we cannot ignore extra methods in the presence

of aliasing, and also in a general computational environment that allows sharing of mutable

objects by multiple users.

Consider first the case of aliasing. The problem here is that within a procedure an object

is accessible by more than one name, so that modifications using one of the names are visible

when the object is accessed using the other name. For example, suppose a is a subtype of r

and that variables

x: T
y: a

both denote the same object (which must, of course, belong to a or one of its subtypes). When

the object is accessed through x, only r methods can be called. However, when it is used

through y, a methods can be called and the effects of these methods are visible later when the

object is accessed via x. To reason about the use of variable x using the specification of its type

i", we need to impose additional constraints on the subtype relation.

Now consider the case of an environment of shared mutable objects, such as is provided

by object-oriented databases (e.g., Thor [26] and Gemstone [29]). (In fact, it was our interes~t

in Thor that motivated us to study the meaning of the subtype relation in the first place.)

In such systems, there is a universe containing shared, mutable objects and a way of naming

those objects. In general, lifetimes of objects may be longer than the programs that create

and access them (i.e., objects might be persistent) and users (or programs) may access objects

concurrently and/or aperiodically for varying lengths of time. Of course there is a need for

some form of concurrency control in such an environment. We assume such a mechanism is in

place, and consider a computation to be made up out of atomic units (i.e., transactions) that

exclude one another. The transactions of different computations can be interleaved and thus

one computation'is able to observe the modifications made by another.

4



If there were subtyping in such an environment the following situation might occur. A user

installs a directory object that maps string names to bags. Later, a second user enters a stack

into the directory under some string name; such binding is analogous to assigning a subtype

object to a variable of the supertype. After this, both users occasionally access the stack object.

The second user knows it is a stack and accesses it using stack methods. The question is: What

does the first user need to know in order for his or her programs to make sense?

We think it ought to be sufficient for a user to only know about the "apparent type" of the

object; the subtype ought to preserve any properties that can be proved about the supertype.

We are concerned only with safety properties ("nothing bad happens"). There are two kinds

of safety properties: invariant properties, which are properties true of all states, and history

properties, which are properties true of all sequences of states. For example, an invariant

property of a bag is that its size is always less than its bound; a history property is that its

bound does not change. We might also want to prove liveness properties ("something good

eventually happens"), e.g., the size of a bag will eventually reach the bound, but our focus here

will be just on safety properties.

Thus the first user ought to be able to reason about his or her use of the stack object

using invariant and history properties of bag. Both of our definitions of subtype assume a type

specification includes an explicit invariant clause that states the type invariants that must

be preserved by any of it subtypes. Our two definitions differ in the way they handle extra

methods, and thus in their way of ensuring that history properties are preserved:

* Our first definition deals with the history properties directly. We add to a type's specifi-
cation a constraint clause that captures exactly those history properties of a type that
must be preserved by any of its subtypes, and we prove that each of the type's methods
preserves the constraint. Showing that a is a subtype of r requires showing that o's
constraint implies r's (under the abstraction function).

* Our second definition deals with history properties indirectly. For each extra method, we
require that an "explanation" be given of how its behavior could be effected by just those
methods already defined for the supertype. The explanation guarantees that the extra
method does not introduce any behavior that was not already present, and therefore it
does not interfere with any history property.

For example, using the first approach we would state constraints for both bags and stacks.

In this particular example, the two constraints are identical; both state that the bound of the

bag (or stack) does not change. The extra method swap-top is permitted because it does not

change the stack's bound. Showing that the constraint for stack implies that of bag is trivial.



Using the second approach, we would provide an explanation for swap-top in terms of existing

methods:

s.swap-top(i) = s.popO; s.push(i)

and we would prove that the explanation program really does simulate swap-top's behavior.

In Section 5 we present and discuss these two alternative definitions. First, however, we

define our model of computation, and then discuss specifications, since these define the objects,

values, and methods that will be related by the subtype relation.

3 Model of Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint typed sets.

Each object has a unique identity. A type defines a set of values for an object and a set of

methods that provide the only means to manipulate that object.

Objects can be created and manipulated in the course of program execution. A state defines

a value for each existing object. It is a pair of mappings, an environment and a store. An

environment maps program variables to objects; a store maps objects "6 values.

State = Env x Store*
Env = Var - Obj
Store = Obj -- Val

Given a variable, x, and a state, p, with an environment, p.e, and store, p.s, we use the notation

X. to denote the value of x in state p; i.e., x, = p.s(p.e(x)). When we refer to the domain of a

state, dom(p), we mean more precisely the domain of the store in that state.

We model a type as a triple, < O,V,M >, where 0 C Obj is a set of objects, V C I4l

is a set of values, and M is a set of methods. Each method for an object is a constructor,

an observer, or a mutator. Constructors of an object of type r return new objects of type r;

observers return results of other types; mutators modify the values of objects of type r. A type

is mutable if any of its methods is a mutator. We allow "mixed methods" where a constructor

or an observer can also be a mutator. We also allow methods to signal exceptions; we assume

termination exceptions, i.e., each method call either terminates normally or in one of a number

of named exception conditions. To be consistent with object-oriented language notation, we

write z.m(a) to denote the call of method m, on object z with the sequence of arguments a.

Objects come into existence and get their initial values through creators. Unlike other kinds

of methods, creators do not belong to particular objects, but rather are independent operations.

6



They are the "class methods"; the other methods are the "instance methods." (We are ignoring

other kinds of class methods in this paper.)

A computation, i.e., program execution, is a sequence of alternating states and statements

starting in some initial state, p0:

P0 S1 P1 ... P,-I S, P,

Each statement, Si, of a computation sequence is a partial function on states. A history is the

subsequence of states of a computation. A state can change over time in only three ways': the

environment can change through assignment; the store can change through the invocation of a

mutator; the domain can change through the invocation of a creator or constructor. We assume

the execution of each statement is atomic. Objects are never destroyed:

V 1 <i < n . dom(pi_1) g dom(pi).

4 Specifications

4.1 Type Specifications

A type specification includes the following information:

"* The type's name;

"* A description of the type's value space;

"* For each of the type's methods:

- Its name;

- Its signature (including signaled exceptions);

- Its behav'or in terms of pre-conditions and post-conditions.

Note that the creators are missing. Creators are specified separately to make it easy for a

type to have multiple implementations, to allow subtypes to have different creators from their

,upertypes, and to make it more convenient to define subtypes. We show how to specify creators

ii 5-ction 4.2. However, the absence of creators means that data type induction cannot be used

to reason about invariant properties. In Section 4.3 we discuss how we make up for this loss by

adding invariants to type specifications.

In our work we use formal specifications in the two-tiered style of Larch [16]. The first tier

defines sorts, which are used to define the value spaces of objects. In the second tier, Larch

'This model is based on CLU semantics(13].

7



bag = type

uses BBag (bag for B)
for all b: bag

put = proc (i: int)
requires I be.elems < be.bound
modifies b
ensures bpat.elems = bpe U {i} A bpot.bound = bpe.bound

get proc ( ) returns (int)
requires bp,.e {}
modifies b
ensures bp..t.elems = be,..elems - {result} A result E be,,.elems A

bp,,t.bound = bp,.bound

card = proc ( ) returns (int)
ensures result = I bpre.elems I

equal = proc (a: bag) returns (bool)
ensures result = (a = b)

end bag

Figure 1: A Type Specification for Bags

interfaces are used to define types. For example, Figure 1 gives a specification for a bag type

whose objects have methods put, get, card, and equal. The uses clause defines the value space

for the type by identifying a sort. The clause in the figure indicates that values of objects of

type bag are denotable by terms of sort B introduced in the BBag specification; a value of

this sort is a pair, < elems,bound >, where elems is a mathematical multiset of integers and

bound is a natural number. The notation { } stands for the empty multiset, U is a commutative

operation on multisets that does not discard duplicates, and I z I is a cardinality operation that

returns the total number of elements in the multiset x.

The body of a type specification provides a specification for each method. Since a method's

specification needs to refer to the method's object, we introduce a name for that object in

the for all line. A requires clause gives a method's pre-condition; e.g., put's pre-condition

checks to see that adding an element will not grow the bag beyond its bound. If the clause is

missing, the pre-condition is trivially "true." A modifies z 1,...,xz, clause is shorthand for the

predicate:

V z E (dom(pre) - {z1,.. .,,}). Zpe = Xpoat

8



which says only objects listed may change in value. A modifies clause is a strong statement

about all objects not explicitly listed, i.e., their values may not change. If there is no modifies

clause then nothing may change. The post-condition is the conjunction of the modifies and

ensuares clauses; e.g., put's post-condition says that the bag's value changes by the addition of

its integer argument. For method m, we write m.pre to denote its pre-condition and rm.post its

post-condition.

In the requires and ensures clauses x stands for an object, Xpre for its value in the initial

state, and xPost for its value in the final state. 2 Distinguishing between initial and final values

is necessary only for mutable types, so we suppress the subscripts for parameters of immutable

types (like integers). We need to distinguish between an object, x, and its value, zx,, or

z,,.t, because we sometimes need to refer to the object itself, e.g., in the equal method, which

determines whether two (mutable) bags are identical. Result is a way to name a method's result

parameter.

Methods may terminate normally or exceptionally; the exceptions are listed in a signals

clause in the method's header. For example, an alternative specification for the get method is

get = proc ( ) returns (int) signals (empty)
modifies b
ensures if bpe.elems={} then signal empty

else bpost.elems bpre.elems - {result) A result E bp,,.clems A
bpost.bound = bpre.bound

4.2 Specifying Creators

Objects are created and initialized through creators. Figure 2 shows specifications for three

different creators for bags. The first creator creates a new empty bag whose bound is its integer

argument. The second and third creators fix the bag's bound to be 100. The third creator uses

its integer argument to create a singleton bag. The assertion new(x) stands for the predicate:

x E dom(post) - dom(pre)

Recall that objects are never destroyed so that dom(pre) g dom(post).

2 Referring to an object's final value is meaningless in pre-conditions, of course.

9



create=- proe (n: int) returns (bag)
requires n > 0
ensures new (result) Aresaltpo.. = < {},n >

create-small = proc ( ) returns (bag)

ensures new(result) Aresultp1,t = <{}, 100 >

create.single = proc (i: int) returns (bag)
ensures new(result) Aresultp,,, = < {Ji}, 100 >

Figure 2: Creator Specifications for Bags

4.3 Type Specifications Need Explicit Invariants

By not including creators in type specifications we lose a powerful reasoning tool: data type

induction. Data type induction is used to prove type invariants. The base case of the rule

requires that each creator of the type establish the invariant; the inductive case requires that

each method preserve the invariant. Without the creators, we have no base case, and therefore

we cannot prove type invariants!

To compensate for the lack of data type induction, we state the invariant explicitly in the

type specification by means of an invariant clause; if the invariant is trivial (i.e., identical to

"true"), the clause can be omitted. The invariant defines the legal values of its type r. For

example, we add

invariant I bp.elems I • bp.bound

to the type specification of Figure 1 to state that the size of a bounded bag never exceeds

its bound. The predicate 4(zp) appearing in an invariant clause for type T" stands for the

predicate:

Vx : r, p : State . Ozp)

Any additional invariant properties must follow from the conjunction of the type's invariant

and invariants that hold for the entire value space. For example, we could show that the size of

a bag is nonnegative because this is true for all mathematical multiset values. Since additional

invariants cannot be proved using data type induction, the specifier must be careful to define

an invariant that is strong enough to support all desired invariants.

We must show that the specification preserves the invariant. All creators for a type r must

establish r's invariant, I:

e For each creator for type r, show l4(resultP0, ).

10



In addition, each method of the type must preserve the invariant. To prove this, we assume

each method is called on an object of type r with a legal value (one that satisfies the invariant),

and show that any value of a r object it produces or modifies is legal:

* For each method m of -r, assume I,.(xe) and show l4(xpo5 t).

For example, we would need to show put, get, card, and equal each preserves the invariant for

bag. Informally the invariant holds because put's pre-condition checks that there is enough

room in the bag for another element; get either decreases the size of the bag or leaves it the

same; card and equal do not change the bag at all. The proof ensures that methods deal with

only legal values of an object's type.

5 The Meaning of Subtype

5.1 Specifying Subtypes

To state that a type is a subtype of some other type, we simply append a subtype clause to

its specification. We allow multiple supertypes; there would be a separate subtype clause for

each. An example is given in Figure 3.

A subtype's value space may be different from its supertype's. For example, in the figure

the sort, S, for bounded stack values is defined in BStack as a pair, < itcm.9,limit >, where

items is a sequence of integers and limit is a natural number. The invariant indicates that the

length of the stack's sequence component is less than or equal to its limit. Under the subtype

clause we define an abstraction function, A, that relates stack values to bag values by relying on

the helping function, mk.elems, that maps sequences to multisets in the obvious manner. (We

will revisit this abstraction function in Section 5.2.2.) The subtype clause also lets specifiers

rename methods of the supertype, e.g., push for put; all other methods of the supertype are

"inherited" without renaming, e.g., equal. In the pre- and post-conditions, [ ] stands for the

empty sequence, 11 is concatenation, last picks off the last element of a sequence, and allButLast

returns a new sequence with all but the last element of its argument.

5.2 First Definition: Constraint Rule

Our first definition of the subtype relation relies on the addition of some information to speci-

fications, namely a constraint clause that states the history properties of the type explicitly 3 ;

3The use of the term "constraint" in borrowed from the Ina Jo specification language [34], which also includes
constraints in specifications.

II



stack = type

uses BStack (stack for S)
for all s: stack

invariant length(sp.iterds) <_ s,.limit

push = proc (i: int)
requires length(sire.items) < spie.limit
modifies s
ensures spa,.items = spe.items I [i] A spo0 t.limit = s,,e.Iimit

pop = proc () returns (int)
requires spre.item # [I6
modifies s
ensures result = last(s,,.e.items) A spo.t.items = allButLast(si,,e.items) A

spost-limit = sire-limit

swap-top = proc (i: int)
requires sp,..items 0 []
modifies s
ensures spo,.t.items = allButLast(s,,,..items) ii [i] A 5pot.fimit = Spre.himit

height = proc ( ) returns (int)
ensures result = length(spe.items)

equal = proc (t: stack) returns (bool)

ensures result = (s = t)

subtype of bag (push for put, pop for get, height for card)
Vst : S . A(st) =< mk.elems(st.items),st.limit >

where mk.elems: Seq -, M
Vi : Int, sq : Seq

mk-_lems([ J)= { 1
mk.elems(sq I1[ i]) = mk.elems(sq) U {i}

end stack

Figure 3: Stack Type

if the constraint is trivial (identically equal to "true"), the clause can be omitted. For example,

we add

constraint bp.bound = bk.bound

to the specification of bag to declare that a bag's bound never changes. We would add a similar

clause to stack's specification. As another example, consider a fat.set object that has an insert

12



but no delete method; fat-sets only grow in size. The constraint for fat.set would be:

constraint V z : int . z E sp 4- X E 3

We can formulate history properties as predicates over state pairs. The predicate appearing

in a constraint clause is an abbreviation for a history property. For example, bag's constraint

expands to the following: For any computation, c,

Vb : bag, p, 0 : State . [p < to A b E dom(p)] * [b,.bound = bV,.bound]

where p < t means that state p precedes state • in c. Note that we implicitly quantify over

all computations, c, and do not require that tP be the immediate successor of p.

Just as we had to prove that methods preserved the invariant, we must show that they

satisfy the constraint by proving it for each mutator. We do this by using the history rule:

* History Rule: For each mutator m of r, show (m.pre A m.post) =: 40[Xpre/Xp,Xpost/ZX]

where q0 is a history property on objects of type r. P[a/b] stands for predicate P with every

occurrence of b replaced by a. The constraint replaces the history rule as far as users are

concerned: users can make deductions based on the constraint but they cannot reason using

the history rule directly.

The formal definition of the subtype relation, <, is given in Figure 4. It relates two types, a

and r, each of whose specifications respectively preserves its invariant, 1, and I,, and satisfies

its constraint, C, and C,. In the methods and constraint rules, since x is an object of type a,

its value (xpre or xpost) is a member of S and therefore cannot be used directly in the predicates

about r objects (which are in terms of values in T). The abstraction function A is used to

translate these values so that the predicates about r objects make sense.

5.2.1 Discussion of Definition

The first clause addresses the need to relate values. It requires that abstraction functions respect

the invariant: an abstraction function must map legal values of the subtype to legal values of

the supertype. This requirement (and the assumption that the type specification preserves

the invariant) suffices to argue that invariant properties of a supertype are preserved by the

subtype.

The second clause addresses the need to relate non-extra methods of the subtype. Our

formulation is similar to America's [1]. The first two signature rules are the standard con-

13



DEFINITION OF THE SUBTYPE RELATION, <: f- = < O,S,M > is a subtype of
r = < Or,T,N > if there exists an abstraction function, A: S --+ T, and a renaming map,
R : M --.. N, such that:

1. The abstraction function respects invariants:

* Invariant Rule. Vs : S . le(s) *- I4(A(s))

A may be partial, need not be onto, but can be many-to-one.

2. Subtype methods preserve the supertype methods' behavior. If m, of r is the corre-
sponding renamed method m, of a, the following rules must hold:

"* Signature rule.

- Contruvariance of arguments. m, and m, have the same number of argu-
ments. If the list of argument types of m, is ai and that of m, is )i, then
Vi . ai <f i.

- Covariance of result. Either both m, and m, have a result or neither has.
If there is a result, let m,'s result type be - and m,'s be 6. Then 6 < 7.

- Exception rule. The exceptions signaled by m, are contained in the set of
exceptions signaled by m,.

"* Methods rule. For all x : o,:

- Pre-condition rule. m,.pre[A(xpre)/Xre] =* ma.pre.

- Post-condition rule. mi,.post =*o. m,.post[A(Xpe )/Ipre, A( po,,)lp,]

3. Subtype constraints ensure supertype constraints.

* Constraint Rule. For all z : a . C0 (,) * C,[A(x,)/xp, A(zb)/xv,]

Figure 4: Definition of the Subtype Relation (Constraint Rule)

tra/covariance rules. The exception rule says that m, may not signal more than m,, since a

caller of a method on a supertype object should not expect to handle an unknown exception.

The pre- and post-condition rules are the intuitive counterparts to the contravariant and covari-

ant rules for signatures. The pre-condition rule ensures the subtype's method can be called in

any state required by the supertype as well as other states. The post-condition rule says that the

subtype method's post-condition can be stronger than the supertype method's post-condition;

hence, any property that can be proved based on the supertype method's post-condition also

follows from the subtype's method's post-condition.

We do not consider invariants as shorthand for explicit conjuncts in a method's pre- and

post-conditions because if we did the pre-condition rule would require that the supertype's

invariant implies a subtype's. Usually just the opposite holds. For example, suppose a smallbag

14



type is like the bag type except that its bound must be equal to 20:

invariant I b,.elems I < b..bound A b,.bound = 20

To show smallbag is a subtype of bag, for the pre-condition rule for the equal method we would

need to show that:

Ibag -: 'atnallbag

which is not true. In fact, the converse holds.

Finally, the third clause succinctly and directly states that constraints must be preserved.

This requirement (and the assumption that each type specification satisfies its constraint) suf-

fices to argue that history properties of a supertype are preserved.

5.2.2 Applying the Definition of Subtyping as a Checklist

Proofs of the subtype relation are usually obvious and can be done by inspection. Typically,

the only interesting part is the definition of the abstraction function; the other parts of the

proof are usually trivial. However, this section goes through the steps of an informal proof just

to show what kind of reasoning is involved. Formal versions of these informal proofs are given

in [28].

Let's revisit the stack and bag example using our definition as a checklist. Here o = <

Ostack, Si {push, pop, swap-top, height, equal} >, and r = < Obag, B, {put, get. card, equal} >.

Recall that we represent a bounded bag's value as a pair, < elems, bound >, of a multiset

of integers and a fixed bound, and a bounded stack's value as a pair, < items, limit >, of a

sequence of integers and a fixed bound. It can easily be shown that each specification preserves

its invariant and satisfies its constraint.

We use the abstraction function and the renaming map given in the specification for stack

in Figure 3. The abstraction function states that for all st : S

A(at) = < mkl.elems(st.items), st.limit >

where the helping function, mk.elems : Seq --* M, maps sequences to multisets and states that

for all sq : Seq, i : lInt:

mk.elem([ 1) = { }
mk-elems(sq 1[ i]) mk-elems(sq) U {i}

The renaming map R is

15



R(push) = put
R(pop) = get
R~hieght) = cardL
R(equal) = equal

Checking the signature and exception rules is easy and could be done by the compiler.

Next, we show the correspondences between push and put, between pop and get, etc. Let's

look at the pre- and post-condition rules for just one method, push. Informally, the pre-condition

rule for put/push requires that we show4:

I A(spe).elems I < A(sp,.).bound
40.

length(s,,.e.items) < spe.limit

Intuitively, the pre-condition rule holds because the length of stack is the same as the size of

the corresponding bag and the limit of the stack is the same as the bound for the bag. Here is

an informal proof with slightly more detail:

1. A maps the stack's sequence component to the bag's multiset by putting all elements of
the sequence into the multiset. Therefore the length of the sequence s,.e.items is equal
to the size of the multiset A(s,..).elems.

2. Also, A maps the limit of the stack to the bound of the bag so that spre-limit
A( spre ).bound.

3. From put's pre-condition we know length(sre.items) < spr,.iimit.

4. push's pre-condition holds by substituting equals for equals.

Note the role of the abstraction function in this proof. It allows us to relate stack and bag

values, and therefore we can relate predicates about bag values to those about stack values and

vice versa. Also, note how we depend on A being a function (in step (4) where we use the

substitutivity property of equality).

The post-condition rule requires that we show push's post-condition implies put's. We can

deal with the modifies and ensures parts separately. The modifies part holds because the

same object is mentioned in both specifications. The ensures part follows from the definition

of the abstraction function.

Finally, the constraint rule requires that we show that the constraint on stacks:

sa.limit = sO,.limit

implies that on bags:

'Note that we are reasoning in terms of the values of the object, s, and that b and s refer to the same object.

16



b,.bound = bo,,.bound

This is true because the length of the sequence component of a stack is the same as the size of

the multiset component of its bag counterpart.

Note that we do not have to say anything specific for swap-top.

5.3 Second Definition: Extension Map

With the constraint approach users cannot use the history rule to deduce history properties.

Our second approach allows them to do so. It requires that we "explain" each extra method in

terms of existing methods. If such explanations are possible, the extra methods do not add any

behavior that could not have been effected in their absence. Therefore, all supertype properties,

including history properties, are preserved.

In our alternative definition, therefore, we do not add any constraints to our type specifica-

tion (and thus remove the requirement that a type specification has to satisfy its constraint).

Instead, to show that a is a subtype of r we require a third mapping, which we call an exten-

sion map, that is defined for all extra methods introduced by the subtype. The extension map

"explains" the behavior of each extra method as a program expressed in terms of non-extra

methods. Interesting explanations are needed only for mutators; non-mutators always have the

"empty" explanation, c.

Figure 5 gives the alternative definition. As before, we assume each type specification

preserves its invariant. In defining the extension map, we intentionally leave unspecified tile

language in which one writes a program, but imagine that it has the usual control structures,

assignment, procedure call, etc.

5.3.1 Discussion of Definition

The first and second clauses are the same as in the first definition except that the pre-condition

rule is stronger. Since the extension map is defined just for the extra methods, it is possible

for a subtype to redefine a supertype's (non-extra) method in a way that causes a violation of

a history property of the supertype. For example, suppose we have a window, w, with a move

method

move = proc (v: vector)
requires v.x > 0 A v.y > 0
ensures wp,.t.center = Wpe.center + v

that guarantees a window always moves in a northeasterly direction. Suppose a my-window

17



DEFINITION OF THE SUBTYPE RELATION, <: -- < O,,S,M > is a subtype of

r = < O, T,N > if there exists an abstraction function, A, a renaming map, R, and an
extension map, E, such that:

1. The abstraction function respects invariants:

* Invariant Rule. Vs : S . 4e(s) =*, Ir(A(s))

2. Subtype methods preserve the supertype methods' behavior. If m, of r is the corre-
sponding renamed method m, of a, the following rules must hold:

* Signature rule.

- Contravariance of arguments. m, and m, have the same number of argu-

ments. If the list of argument types of m, is ai and that of m, is /3i, then
Vi . ai < A3.

- Covariance of result. Either both m, and m, have a result or neither has.
If there is a result, let m,'s result type be 7 and me's be 6. Then 6 < 7-.

- Exception rule. The exceptions signaled by m, are contained in the set of
exceptions signaled by m,.

a Methods rule. For all x : a':

- Pre-condition rule. m,.pre[A(xTpe)/xpe] = miq.pre.

- Post-condition rule. m,.post =:,. m,.post[A(xp,.e)/xp,,e, A(xpost)/xpost]

3. The extension map, E : 0, x M x Obj* --* Prog, must be defined for each method,
m, not in dom(R). We write E(x.m(a)) for E(x, m, a) where x is the object on which
m is invoked and a is the (possibly empty) sequence of arguments to m. E's range is
the set of programs, including the empty program denoted as e.

a Extension rule. For each new method, m, of x : a, the following conditions must
hold for ir, the program to which E(x.m(a)) maps:

- The input to 7r is the sequence of objects [x]lla.
- The set of methods invoked in ir is contained in the union of the set of

methods of all types other than a and the set of methods dom(R).

- Diamond rule. We need to relate the abstracted values of x at the end of
either calling just m, or executing 7r. Let p1 be the state in which both m is
invoked and 7r starts. Assume m.pre holds in P, and the call to m terminates
in state P2. Then we require that ir terminates in state ¢b and

A(x, 2 ) = A(x,).

Note that if ir = c, o = Pl.

Figure 5: Definition of the Subtype Relation (Extension Rule)

type is just like window except with a weaker move method:

move = proc (v: vector)
ensures wpot.center = wpo,,.center + v

The methods rule given previously, in particular the pre-condition rule, holds, but clients of

18



m E(jLma))

OAA

y :T

Figure 6: The Diamond Diagram

window objects would be surprised if a my-window object were used (and moved) in place of a

window.' To rule out this behavior, we require that the pre-condition of each non-extra method

be the same as the corresponding supertype's method.' Note that America uses the weaker

pre-condition rule of Figure 4, and therefore he would erroneously allow subtype relations like

this one, since his technique does not describe the constraints explicitly.

The third clause of the definition requires what is shown in the diamond diagram in Figure 6,

read from top to bottom. We must show that the abstract value of the subtype object reached

by running the extra method m is also reached by running m's explanation program. This

diagram is not quite like a standard commutative diagram because we are applying subtype

methods to the same subtype object in both cases (m and E(z.m(a))) and then showing the

two values obtained map via the abstraction function to the same supertype value.

The extension rule constrains only what an explanation program does to its method's object,

not to other objects. This makes sense because explanation programs do not really run. Its

purpose is to explain how an object could be in a particular state. Its other arguments are

hypothetical; they are not objects that actually exist in the object universe.

The diamond rule is stronger than necessary because it requires equality between ab-

stract values. We need only the weaker notion of observable equivalence (e.g., see Kapur's
definition(20]), since values that are distinct may not be observably different if the supertype's

set of methods (in particular, observers) is too weak to let us perceive the difference. In practice,

sThanka to Ian Maung for pointing out this problem and inspiring this example.

'An alternative solution to this problem would be to define the extension map for all methods, not just extra
ones.

19



such types are rare and therefore we did not bother to provide the weaker definition.

Preservation of history properties is ensured by a combination of the methods and extension

rules; they together guarantee that any call of a subtype method can be explained in terms of

calls of methods that are already defined for the supertype. To show that history properties are

preserved by non-extra mutators, we use the methods rule. However, because the properties are

not stated explicitly, they cannot be proved for the extra methods. Instead extra methods must

satisfy any possible property, which is surely guaranteed if the extra methods can be explained

in terms of the non-extra methods via the extension map.

5.3.2 The Bag and Stack Example Again

The alternative definition of subtyping is also used as a checklist to prove a subtype relation.

Besides the abstraction function, the only other interesting issue is the definition of the extension

map. As was the case with the constraint approach, the actual proofs are usually trivial.

To prove that stack is a subtype of bag we follow the same procedure as in Section 5.2.2.

except we need to show that the pre-conditions are identical, a trivial exercise for this example.

We must additionally define an extension map to define swap-top's effect. As stated earlier, it

has the same effect as that described by the program, 7, in which a call to pop is followed by

one to push:

E(s.swap-top(i)) = s.pop(; s.push(i)

Showing the extension rule is just like showing that an implementation of a procedure satisfies

the procedure's specification, except that we do not require equal values at the end, but just

equal abstract values. (In fact, such a proof is identical to a proof showing that an imple-

mentation of an operation of an abstract data type satisfies its specification[19].) In doing the

reasoning we rely on the specifications of the methods used in the program. Here is an informal

argument for swap-top. We note first that since s.swap-top(i) terminates normally, so does the

call on s.popo (their pre-conditions are the same). Pop removes the top element, reducing the

size of the stack so that push's pre-condition holds, and then push puts i on the top of the

stack. The result is that the top element has been replaced by i. Thus, s, = s,,, where P2 is

the termination state if we run swap-top and b is the termination state if we run 7r. Therefore

A(sp,) = A(sq,), since A is a function.

20


